COLLABORATIONS FOR CHANGE

Global Goals for Tomorrow's Education, Today **19TH ~ 21ST JUNE 2018 KEELE UNIVERSITY**

Creating Better Buildings Looking beyond the badge

Headline Sponsor

Contributors to today's workshop

Leicester

George Davies Centre (Centre for Medicine)

Oxford Kellogg Hub

COLLABORATIONS FOR CHANGE

What are we doing this morning?

• Your views on creating more sustainable buildings (10 mins)

• Leicester Passiv Haus and Soft Landings

• The Oxford Passiv Haus Journey (35 mins)

 Creating Better Buildings – your questions answered takeaways from the session (15 mins)

How many of you have 50 year old buildings?

COLLABORATIONS FOR CHANGE

Creating Better Buildings – your views

COLLABORATIONS FOR CHANGE

• What are the barriers?

• What can go wrong?

• What would creating better buildings mean for your estate?

Dur Motivation

George Davies Centre Passivhaus

COLLABORATIONS FOR CHANGE Global Goals for Tomorrow's Education, Today 19TH ~ 21ST JUNE 2018 KEELE UNIVERSITY

Energy Consumption Comparison

Old Building Stock

Vs New Building Stock (Year 1 Data)

Maurice Shock Building		
320kWhr/m ² per annum space heating	Vs	
500kWhr/m ² per annum total	Vs	
£360,000 per annum energy bill	Vs	

- Centre for Medicine DEC 'A' (25)
 - 18kWhr/m² per annum space heating
 - 59kWhr/m² per annum total
 - £37,917 per annum energy bill (£2.95/m²)

Overview – Carbon Reduction Target

Absolute emissions targets is 25% by 2020 and against its 2004/05 base year

George Davies (Centre for Medicine) – 12,836m²

- Bringing together: Department of Medical Education, Department of Health Sciences and the School of Psychology
- Construction Cost: £29 million

Original Brief

engineering change

COLLABORATIONS FOR CHANGE Global Goals for Tomorrow's Education, Today 1978 - 2151 UNF 2018, KEELE UNIVERSITY

Final Brief

engineering change

COLLABORATIONS FOR CHANGE

Low Energy Roadmap

engineering change

COLLABORATIONS FOR CHANGE Global Goals for Tomorrow's Education, Today

Balancing Priorities

COLLABORATIONS FOR

- + Free radiant heating
- south facing overheating
- south façade = more glare ?

- + Larger windows
- + Less artificial lighting
- + Better colour spectrum
- - more heat loss
- - more glare ?
- blinds down

- Full Building Information Modelling (BIM) using Revit
- IES/TAS Dynamic Simulation Modelling for Part L compliance, EPC and Overheating checks
- AGI-32 for daylight modelling
- Specialist Lighting Design
- PassivHaus Planning Package (PHPP) in the background

Key Features

couchperrywilkes Collaboration of the collaboration

engineering change

ANGE

Envelope Mock-up and Testing

COLLABORATIONS FOR CHANGE Global Goals for Tomorrow's Education, Today

Air tightness sampling & testing

Thermal Mass

Light Weight

Heavy Weight

Admittance - rate at which a material absorbs heat

Mechanical Ventilation Heat Recovery (MVHR)

COLLABORATIONS FOR CHANGE

Mixed Mode Ventilation Strategy to Further Reduce CO₂ ppm

Air Quality

Energy Comparison - BRUKL

Natural Ventilation

57			
	Actual	Notional	
Heating	(18.14)	50.39	
Cooling		0	
Auxiliary	(16.53)	10.19	
Lighting	17.04	8.65	
Hot water	122.4	114.02	
Equipment*	29.65	29.65	
TOTAL**	173.75	183.26	

Mechanical Ventilation

V

	Actual	Notional
Heating	3.6	49.05
Cooling	0	0
Auxiliary	18.79	12.83
Lighting	17.04	8.65
Hot water	122.36	114.02
Equipment*	29.65	29.65
TOTAL**	161.55	184.56

Mechanical Ventilation Heat Recovery (MVHR)

Ground to Air Heat Exchanger

- 1.6km of ventilation pipework
- Inner layer lined in silver particles to inhibit microbial growth

COLLABORATIONS FOR CHANGE

Lighting Systems and Controls

Lighting Systems and Controls

Daylight Availability

- 10,000 Lux for 70% working year
- 300 to 500 Lux
- 1,486 hours of sunshine (34% of daylight)
- 4% DF = 400 Lux from 10,000 Lux external

couchperrywilkes

COLLABORATIONS FOR CHANGE

Lighting Systems and Controls

Probability of Turning on Lights at 9am:

- 1% DF : 40% likely
- 3% DF : 25% likely
- 5% DF : 10% likely

couchperrywilkes

engineering cha

COLLABORATIONS FOR CHANGE

Lighting - Reflectances

COLLABORATIONS FOR CHANGE

couchperrywilkes

Soft landings is a 5 stage process starting off at the first stage of project idea through to final stages of users moving into the building, helping with energy usage and correct set up for university and users.

Early User Engagement

COLLABORATIONS FOR CHANGE

Current Working Environment:

Warm in Summer Cold in Winter

Early User Engagement

Current Working Environment – 2kW Heaters under Desk

Soft Landings – The Performance Gap

Soft Landings

3 Year Soft Landings Programme

User Feedback and Engagement Workshops

Building User Guide

couchperrywilkes

engineering change

COLLABORATIONS FOR CHANGE

Reality check

COLLABORATIONS FOR CHANGE

One year post-occupancy:

66

If degree certificates were awarded for outstanding building performance, then the University of Leicester's Centre for Medicine would have graduated with first class honours. **99**

- Andy Pearson, ICIBSE Journal

BETTER BUILDINGS WITH PASSIVHAUS

Tom Heel – Deputy Head of Environmental Sustainability, University of Oxford

Chris Swinburn – Principal, CBG Consultants

DELIVERING TARGETS

DELIVERING TARGETS

Measured annual energy consumption from Carbonbuzz database compared to BREEAM rating Total measured annual energy use (kWh/m².a) 300 250 200 150 100 50 0 Building

BREEAM 'Very Good'

BREEAM 'Excellent'

DELIVERING TARGETS

"What got us here won't get us there"

Marshall Goldsmith

EVIDENCE BASED

POTENTIAL IMPACT

COLLABORATIONS FOR CHANGE

BREAKING RULES

Optimised for Energy/Overheating

Architectural design

BREAKING RULES

- Winter heat gains vs summer overheating. •
- Optimised Shading design ۲
- Careful modelling required (and counting pixels!)

CHASING DETAIL

SITE DETAILING

KEEP IT SIMPLE

PERFORMANCE

Design estimate Actual

PERFORMANCE

■ Design estimate ■ Actual

Design estimate Actual

WINTER COMFORT

Kellogg Hub Temperatures (5-minute readings)

OVERHEATING

Takeaways from the session:

- 'Physics works!' spend time on modelling your buildings
- Detailing is critical
- Give people what they need not what they ask for
- You're wasting your time using BREEAM for CO₂ reduction

End extreme poverty, inequality and climate change

www.sdgaccord.org

