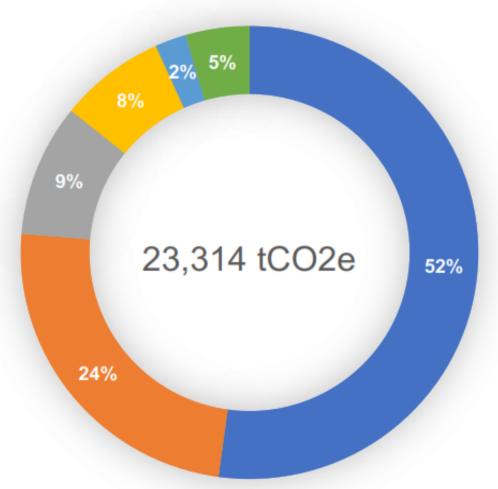


Scope 3 Procurement Emissions Project

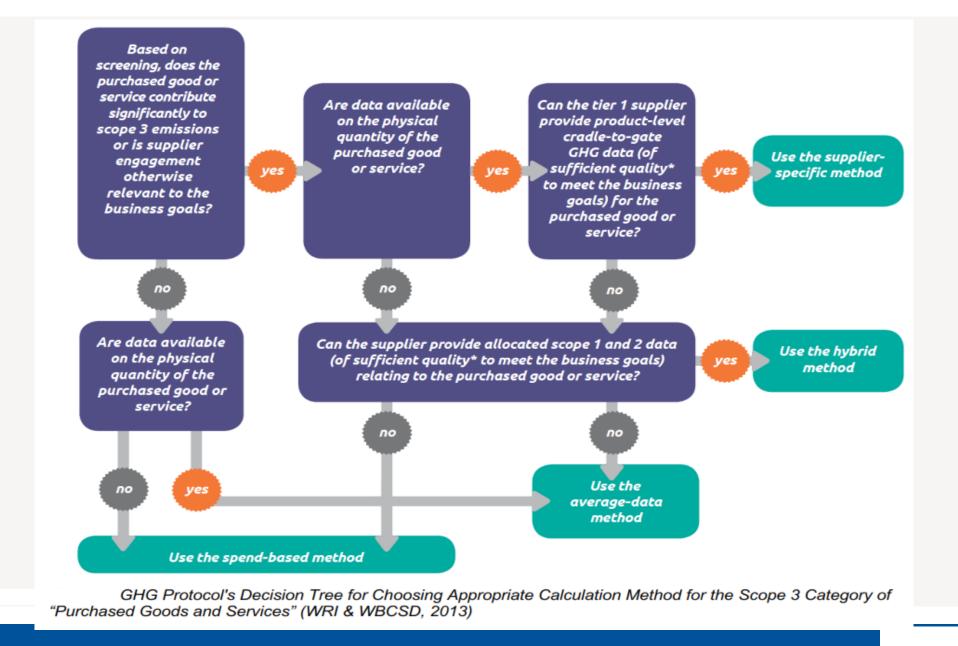
David Stutchfield, Sustainability Manager


Estates Carbon 2018-2019 – HESCET output

Estates & Buildings– Five top impact categories

- Specialist Building Services (Scaffolding, Plumbing, Carpentry, Roofing)
- Plant Purchase, Hire & Maintenance, inc. Lifts, Air-conditioning, Boilers, Generators etc
- Prof Services; Architects; Estates Agents;
 QS; Construction Managemt; Surveying Equip
 & Services
- Ground maintenance; Supplies & Services (incl Landscaping)

Other



Procurement Carbon

Single project – spend based method

CO2e Emissions from the	Project using the Spend-based Method	d
Sum of value of purchased goods for the contractor's Bill of Quantities.	project (£) from	10,344,511
DEFRA emission factor for construction co subcategory of Estates & Buildings (kgCO	0.5561	
CO2e emissions from the	project (tonnes)	5,752.14

Average data method

Based on the details Bill of Quantities supplied by the Construction Contractor

	Qty	Unit	Rate	£ p
BILL 01 - PRELIMINARIES			£	1,799,214.79
BILL 02 - PROVISIONAL SUMS			£	1,526,200.00
BILL 03 - ENABLING WORKS/ ALTERATIONS/ DEMOLI	TION		£	311,561.34
BILL 04 - EARTHWORKS & EXCAVATIONS			£	53,786.33
BILL 05 - IN-SITU CONCRETE			£	308,198.95
BILL 06 - MASONRY			£	25,123.83

Bill of Quantities - detail

BILL I	NO. 05			CON	CRETE WORK
		Qty	Unit	Rate	£р
	E20 FORMWORK FOR IN SITU CONCRETE				
	FORMWORK; BASIC FINISH				
	Perimeter edges of slabs				
а	not exceeding 250 high	182	m	13.13	2,389.6
	Sides of upstands				
b	250 to 500 high	65	m	29.24	1,900.60
С	500 to 1 m high	65	m	58.49	3,801.8
	Steps in top surface				
d	250 to 500 high	64	m	24.62	1,575.68
	E30 REINFORCEMENT FOR IN SITU				
	CONCRETE				
	HIGH YIELD STEEL BAR REINFORCEMENT				
	Straight bars				
е	H10	0.32	t	1330.26	425.68
	Bent bars				
f	H10	0.48	t	1330.26	638.52
	STEEL FABRIC REINFORCEMENT				
	Square mesh fabric; slabs				
g	A393; 6.16Kg/m2; 400 side and 400 end laps	2473	m2	7.10	17,558.30

ICE Database Tool – based on Environmental Product Declarations

	A	В	C	D	E	F	G	H	
		Material	Classification	Quantity a	nd Units		Embodied Carbon		
Material		Sub-material	ICE DB Name	Quantity of declared unit	Units of declared unit	Embodied Carbon (kg	CO2e Emissions of	CO2e Emissions	
						CO2e per declared unit)	Material (kg CO2e)	Material (tCO2e	
Concrete		mcrete, GEN 1	Concrete GEN1 with average UK additions cement	183		212.54	38,895.32	38.9	
Concrete	Please	Concrete, 40/50	Concrete RC40/50 with average UK additions cement	197	m3	379.51	74,764.02	74.	
Steel	select a	Steel, Bar and Rod	Steel, Rebar	10200	kg	1.99	20,298.00	20.	
Concrete	material	Concrete, GEN 1	Concrete GEN1 with average UK additions cement	8	m3	212.54	1,700.34	1.	
Concrete		Concrete, 35/45	Concrete RC35/45 with average UK additions cement	286	m3	354.65	101,429.57	101	
Steel		Steel, Bar and Rod	Steel, Rebar	800	kg	1.99	1,592.00	1.	
Concrete		Concrete, GEN 1	Concrete GEN1 with average UK additions cement	4	m3	212.54	850.17	0	
Concrete		Concrete, 40/50	Concrete RC40/50 with average UK additions cement	51	m3	379.51	19,355.15	19	
Steel		Steel, Bar and Rod	Steel, Rebar	4260	kg	1.99	8,477.40	8	
Concrete		Concrete, 28/35	Concrete RC28/35 with average UK additions cement	136		300,56	40,876.28	40	
Steel		Steel, Bar and Rod	Steel, Rebar	5690	kg	1.99	11,323.10	11	
Concrete		Concrete, 28/35	Concrete RC28/35 with average UK additions cement	39	m3	300,56	11,721.87	11	
Steel		Steel, Bar and Rod	Steel, Rebar	1570	kg	1.99	3,124.30	3	
Concrete		Concrete, block wall	100 mm thickness wall, single skin concrete block, solid, high de	6	m2	19.52	117,10	0	
Concrete		Concrete, block wall	215 mm thickness wall, single skin concrete block, solid, high de	108	m2	42.03	4,539.73	4	
Concrete		Concrete, GEN 1	Concrete GEN1 with average UK additions cement		m3	212.54	1,487.80	1	
Concrete		Concrete, block wall	100 mm thickness wall, single skin concrete block, solid, high de	14	m2	19.52	273.24	0	
Steel		Steel, Section	Steel, Section	120020	kg	1.55	186,031.00	186	
Steel		Steel, Section	Steel, Section	164920		1.55	255,626.00	255	
Steel		Steel, Sheet galvanised	Steel, hot-dip galvanized steel	1430	kg	2.76	3,946.80	3	
Steel		Steel, Sheet galvanised	Steel, hot-dip galvanized steel	22822.80	kg	2.76	62,990.93	62	
Timber		Timber, General	Timber - Average of all data - No Carbon Storage	24319.82	kg	0.49	11,985.44	11	
Steel		Steel, Sheet galvanised	Steel, hot-dip galvanized steel	2457	kg	2.76	6,781.32	6	
Glass		Glass, Toughened	Toughened, 12 mm of glass, ex frame	56.70	m2	50.02	2,835.96	2	
Glass		Glass, Glazing triple	Triple glazed unit, 18 mm of glass, ex cavity and ex frame	56.70	m2	78.61	4,457.45	4	
Timber		Timber, Plywood	Timber, Plywood - No Carbon Storage	14089.26	kg	0.68	9,601.33	9	
Timber		Timber, Softwood	Timber, Softwood - No Carbon Storage	124505.65	kg	0.26	32,694.49	32	
Timber		Timber, Fibreboard	Timber, Fibreboard - No Carbon Storage	232.20		0.72	166.10	0	
Steel		Steel, plate	Steel, Plate	19453.42	B	2.46	47,855.42	47	
Cement		Cement, Mortar	Mortar or screed (1:4 cement:sand mix) (Using average UK Ceme	57204	B	0.15	8,547.81	8	
Steel		Steel, Sheet galvanised	Steel, hot-dip galvanized steel	316747.5		2.76	874,223.10	874	
Aggregate	eSand	AggregateSand, General sand	Aggregates and sand, general UK, mixture of land won, marine,	1008000	kg	0.01	7,529.40	7	
Asphalt		Asphalt, for roads	Road surface, asphalt, 3% (bitumen) binder content (by mass)	309		14.20	4,386.95	4	
Concrete		Concrete. Pre-Cast	precast concrete paving (Blocks, Slabs, Channels and Kerbs)	86104	kg	0.13	11.288.59	11.	

Results from the Tool Developed from the ICE Database

Breakdown of CO2 emissions by material

Material	Sub-material	Percentage of Category Total CO2e Emissions of Material (tCO2e)
Steel	Steel, Sheet galvanised	63.24%
	Steel, Section	27.32%
	Steel, fabric reinforcement	3.46%
	Steel, plate	2.96%
	Steel, Bar and Rod	2.80%
	Steel, Sheet stainless	0.21%
Steel Total		70.22%
Concrete	Concrete, 35/45	31.54%
	Concrete, 40/50	26.87%
	Concrete, 28/35	14.90%
	Concrete, Pre-Cast	12.84%
	Concrete, GEN 1	12.46%
	Concrete, block wall	1.40%
Concrete Total		15.34%
Glass	Glass, Insulated	90.89%
	Glass, Glazing triple	5.57%
	Glass, Toughened	3.54%
Glass Total		3.48%

Supplier-specific Environmental Product Declaration - Kingspan

Environmental Product Declaration - Kingspan

Table 6: Environmental information for wall panel: K	(S1000RW, 4	10mm thick	, R2.35.						
Impact Category	A1 - 3	A4	A5	B2	C1	C2	C3	C4	D
Potential Environmental Impacts									
Global warming (kgCO ₂ eq)	44.6	3.57	0.743	2.90	6.35E-04	0.405	0.00	0.0615	-5.06
Ozone depletion (kgCFC11 eq)	2.44E-06	1.39E-07	2.68E-08	7.68E-08	1.14E-10	1.41E-08	0.00	4.98E-09	-2.51E-07
Acidification of land and water (kgSO ₂ eq)	5.72E-01	1.22E-02	6.31E-03	1.02E-02	4.77E-06	1.31E-03	0.00	2.48E-04	-1.57E-02
Eutrophication (kgPO ₄ ³ · eq)	1.68E-01	3.30E-03	1.82E-03	2.43E-03	1.10E-06	3.56E-04	0.00	6.25E-05	-9.81E-03
Photochemical ozone creation (kgC ₂ H ₂ eq)	1.68E-01	7.43E-04	2.65E-04	3.82E-04	1.26E-07	8.45E-05	0.00	1.53E-05	-4.76E-03
Depletion of abiotic resources (elements) (kgSb eq)	1.49E-03	1.57E-05	1.51E-05	9.25E-07	2.00E-10	2.01E-06	0.00	2.53E-07	-3.92E-06
Depletion of abiotic resources (fossil) (MJ)	667.21	53.5	6.65	41.1	0.00897	6.22	0.00	0.89	-64.8
Use of Resources									
Renewable primary energy (excl. raw materials) (MJ)	35.9	0.691	0.917	0.453	5.16E-05	0.0733	0.00	0.0108	0.204
Renewable primary energy (raw materials) (MJ)	3.46								
Total use of renewable primary energy (MJ)	39.40	0.691	0.917	0.453	5.16E-05	0.0733	0.00	0.0108	0.204
Non-renewable primary energy (excl. raw materials) (MJ)	661.9	54.0	6.607	43.7	0.0097	6.25	0.0	0.93	-41.4
Non-renewable primary energy (raw materials) (MJ)									
Total use of non-renewable primary energy (MJ)	661.9	54.0	6.607	43.7	0.0097	6.25	0.0	0.93	-41.4

Comparison between Supplier-specific and Average-data Methods

Material	Sub- material	ICE DB Name	Quantity	Unit	Embodied Carbon Factor	tCO2e	Difference
a) From EPD							
Insulation	Insulation, wall panel	Kingspan wall panel system	320.00	m2	44.6	14.27	
b) From ICE							
Insulation	Insulation, wall panel	Insulation foam (26%)	856.96	kg	4.26	3.65	
Steel	Steel, Sheet	Steel, finished cold-rolled coil (63%)	2,076.48	kg	2.73	5.67	
					Total	9.32	-35%

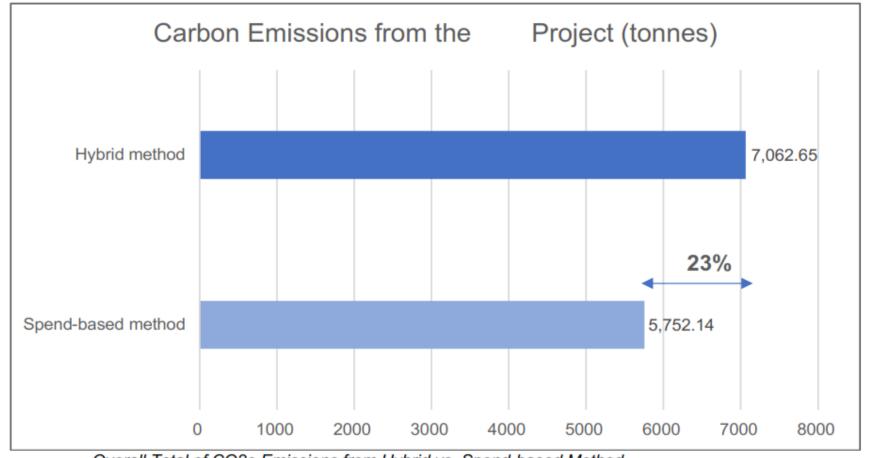
Supplier Specific Method

- Requires contractor to collect EPDs from all material suppliers
- Must be specified at beginning of project
- Only large contractors have sufficient experience
- Additional cost

It has to be a mandatory requirement (...) We could do it for them, all they have to do is ask. (Head of Procurement, Organisation 3)

On site direct emissions

Construction Stage Emissions Type	Total Carbon Emissions (tCO2e)
Electricity (from site electricity metering)	71.55
Fuel (from diesel generators, mobile plant & equipment)	47.95
Transportation of construction materials and waste	18.00
Water	0.38
Total	137.88



UoSA Procurement

Result of Hybrid method

Carbon Emissions from the	Project	tCO2e
Bottom-up emissions data		2,440.01
Top-down emissions data		4,622.64
Total		7,062.65

Comparison of calculation methods

Comparison of calculation methods

- We have looked at all calculation methods for a single project
- A hybrid approach is the most practical
- For a project in St Andrews, more resolution leads to higher emissions
- All calculation methods in same ballpark

Lessons learnt

- Hard to do this retrospectively needs to be specified at start of project
- For a traditional construction building spend based methods are OK

Summary

Key questions going forwards include;

- How can we improve carbon data and build these into our baseline reporting across the sector?
- How do we embed carbon measurement into our procurement process and decision making?
- How can Scottish Procurement and APUC take the lead by building carbon disclosure through all future contracts as a mandatory criteria?

The climate change reporting duties and sustainable procurement duties, to me,

they go hand in hand. At the moment, they may be operating somewhat separately.

(Director, Organisation 4)

